ISOMONODROMY FOR COMPLEX LINEAR q-DIFFERENCE EQUATIONS
نویسندگان
چکیده
— The words “monodromy” and “isomonodromy” are used in the theory of difference and q-difference equations by Baranovsky-Ginzburg, Jimbo-Sakai, Borodin, Krichever,... although it is not clear that phenomena of branching during analytic continuation are involved there. In order to clarify what is at stake, we survey results obtained during the last few years, mostly by J.-P. Ramis, J. Sauloy and C. Zhang. Links to Galois theory (as developped by P. Etingof, M. van der Put & M. Singer, Y. André, L. Di Vizio...) are briefly mentioned. A tentative definition of isomonodromy deformations is given along with some elementary results. Résumé (Isomonodromie des équations aux q-différences complexes). — Les mots « monodromie« et « isomonodromie » ont été employés en théorie des équations aux différences et aux q-différences par Baranovsky-Ginzburg, Jimbo-Sakai, Borodin, Krichever,... bien que, dans un tel contexte, n’apparaissent pas clairement des phénomènes de ramification par prolongement analytique. Afin de clarifier ce qui est en jeu, nous décrivons des résultats obtenus ces dernières années, principalement par J.-P. Ramis, J. Sauloy et C. Zhang. Les liens avec la théorie de Galois (telle qu’elle a été développée par P. Etingof, M. van der Put & M. Singer, Y. André, L. Di Vizio...) sont brièvement mentionnés. Une définition expérimentale de déformation isomonodromique est proposée, ainsi que quelques résultats élémentaires.
منابع مشابه
Isomonodromy Transformations of Linear Systems of Difference Equations
We introduce and study “isomonodromy” transformations of the matrix linear difference equation Y (z + 1) = A(z)Y (z) with polynomial (or rational) A(z). Our main result is a construction of an isomonodromy action of Zm(n+1)−1 on the space of coefficients A(z) (here m is the size of matrices and n is the degree of A(z)). The (birational) action of certain rank n subgroups can be described by dif...
متن کاملThe Discrete Painlevé I Hierarchy
The discrete Painlevé I equation (dPI) is an integrable difference equation which has the classical first Painlevé equation (PI) as a continuum limit. dPI is believed to be integrable because it is the discrete isomonodromy condition for an associated (single-valued) linear problem. In this paper, we derive higher-order difference equations as isomonodromy conditions that are associated to the ...
متن کاملGrowth of meromorphic solutions for complex difference equations of Malmquist type
In this paper, we give some necessary conditions for a complex difference equation of Malmquist type $$sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))},$$ where $n(in{mathbb{N}})geq{2}$, and $P(f(z))$ and $Q(f(z))$ are relatively prime polynomials in $f(z)$ with small functions as coefficients, admitting a meromorphic function of finite order. Moreover, the properties of finite o...
متن کاملIntegrable Systems and Isomonodromy Deformations
We analyze in detail three classes of isomondromy deformation problems associated with integrable systems. The first two are related to the scaling invariance of the n× n AKNS hierarchies and the Gel’fand-Dikii hierarchies. The third arises in string theory as the representation of the Heisenberg group by [(L)+, L] = I where L is an nth order scalar differential operator. The monodromy data is ...
متن کاملAn Isomonodromy Cluster of Two Regular Singularities
We consider a linear 2 × 2 matrix ODE with two coalescing regular singularities. This coalescence is restricted with an isomonodromy condition with respect to the distance between the merging singularities in a way consistent with the ODE. In particular, a zero-distance limit for the ODE exists. The monodromy group of the limiting ODE is calculated in terms of the original one. This coalescing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007